New lower bounds for van der Waerden numbers

نویسندگان

چکیده

Abstract We show that there is a red-blue colouring of $[N]$ with no blue 3-term arithmetic progression and red length $e^{C(\log N)^{3/4}(\log \log N)^{1/4}}$ . Consequently, the two-colour van der Waerden number $w(3,k)$ bounded below by $k^{b(k)}$ , where $b(k) = c \big ( \frac {\log k}{\log k} )^{1/3}$ Previously it had been speculated, supported data, $w(3,k) O(k^2)$

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on some van der Waerden numbers

For positive integers s and k1,k2, . . . ,ks, the van der Waerden number w(k1,k2, . . . ,ks;s) is the minimum integer n such that for every s-coloring of set {1,2, . . . ,n}, with colors 1,2, . . . ,s, there is a ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2) for fixed m. We include a table of values of w(k,3;2) that are very close to this l...

متن کامل

New Lower Bounds for van der Waerden Numbers Using Distributed Computing

This project found improved lower bounds for van der Waerden numbers. The number W (k, r) is the length of the shortest sequence of colors with r different colors that guarantees an evenly-spaced subsequence (or arithmetic progression) of the same color of length k. We applied existing techniques: Rabung’s using primitive roots of prime numbers and Herwig et al’s Cyclic Zipper Method as improve...

متن کامل

A New Method to Construct Lower Bounds for Van der Waerden Numbers

We present the Cyclic Zipper Method, a procedure to construct lower bounds for Van der Waerden numbers. Using this method we improved seven lower bounds. For natural numbers r, k and n a Van der Waerden certificate W (r, k, n) is a partition of {1, . . . , n} into r subsets, such that none of them contains an arithmetic progression of length k (or larger). Van der Waerden showed that given r an...

متن کامل

Some New Exact van der Waerden numbers

For positive integers r, k0, k1, ..., kr−1, the van der Waerden number w(k0, k1, ..., kr−1) is the least positive integer n such that whenever {1, 2, . . . , n} is partitioned into r sets S0, S1, ..., Sr−1, there is some i so that Si contains a ki-term arithmetic progression. We find several new exact values of w(k0, k1, ..., kr−1). In addition, for the situation in which only one value of ki d...

متن کامل

Primitive Recursive Bounds for Van Der Waerden Numbers

Presented at a meeting of the British Mathematics Colloquium; received by the editors February 10,1988. 1980 Mathematics Subject Class~fication (1985 Revision). Primary 05A99; Secondary 15A03.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum of Mathematics, Pi

سال: 2022

ISSN: ['2050-5086']

DOI: https://doi.org/10.1017/fmp.2022.12